Example: The Shunt

Regulator

Consider the shunt regulator, built using a zener diode with $V_{z k}=15.0 \mathrm{~V}$ and incremental resistance $r_{z}=5 \Omega$:

1. Determine R if the largest possible value of $i L$ is 20 mA .
2. Using the value of R found in part 1 determine i_{z} if $R_{L}=1.5 \mathrm{~K}$.
3. Determine the change in v_{o} if v_{s} increases one volt.
4. Determine the change in v_{o} if i_{L} increases 1 mA .

Part 1:

From KCL we know that $i=i_{z}+i_{\text {L }}$.
We also know that for the diode to remain in breakdown, the zener current must be positive.

$$
\text { i.e., } i_{z}=i-i_{L}>0
$$

Therefore, if i_{L} can be as large as 20 mA , then i must be greater than 20 mA for i_{z} to remain greater than zero.
i.e. $i>20 \mathrm{~mA}$

Q: But, what is i??

A: Use the zener CVD model to analyze the circuit.

Therefore from Ohm's Law:

$$
i=
$$

and thus i>20mA if:

$$
R<
$$

Note we want R to be as large as possible, as large R improves both line and load regulation.

Therefore, set $R=500 \Omega=0.5 \mathrm{~K}$

Part 2:

Again, use the zener CVD model, and enforce $v_{D}^{i}=0$:

Analyzing, from KCL:

$$
i_{D}^{i}=
$$

and from Ohm's Law:
$i=$

$$
i_{L}=
$$

Therefore $i_{0}^{i}=i-i_{L}=20-10=10.0 \mathrm{~mA}\left(\therefore i_{0}^{i}=10>0 \vee\right)$

And thus we estimate $i_{z}=i_{0}^{i}=10.0 \mathrm{~mA}$

Part 3:

The shunt regulator line regulation is:

$$
\text { Line Regulation }=\frac{r_{z}}{R+r_{z}}=
$$

Therefore if $\Delta v_{s}=1 \mathrm{~V}$, then $\Delta v_{o}=(0.01) \Delta v_{s}=0.01 \mathrm{~V}$

Part 4:

The shunt regulator load regulation is:

$$
\text { Load Regulation }=\frac{-R r_{z}}{R+r_{z}}=
$$

Therefore if $\Delta i_{L}=1 \mathrm{~mA}$, then $\Delta v_{o}=-(4.95) \Delta i_{L}=-4.95 \mathrm{mV}$

