<u>Example: The Shunt</u> <u>Regulator</u>

Consider the shunt regulator, built using a zener diode with V_{ZK} =15.0 V and incremental resistance r_z = 5 Ω :

- **1.** Determine **R** if the largest possible value of i_L is 20 mA.
- **2**. Using the value of R found in part 1 determine i_Z if R_L =1.5 K.
- 3. Determine the change in v_0 if V_5 increases one volt.
- 4. Determine the change in v_0 if i_1 increases 1 mA.

Part 1:

From KCL we know that $i = i_{Z} + i_{L}$.

We also know that for the diode to remain in breakdown, the zener current must be **positive**.

i.e., $i_{Z} = i - i_{L} > 0$

Therefore, if i_{L} can be as large as 20 mA, then *i* must be greater than 20 mA for i_{Z} to remain greater than zero.

i.e. *i* > 20mA

Q: But, what is i ??

A: Use the zener CVD model to analyze the circuit.

Therefore from Ohm's Law:

i =

and thus i> 20mA if:

Note we want *R* to be as large as possible, as large *R* improves both **line** and **load** regulation.

Therefore, set $R = 500 \Omega = 0.5 K$

Part 2:

Again, use the zener CVD model, and enforce $v_D^i = 0$:

